Fatigue Analysis of Powertrain Components Including Gray Cast Iron

Kurt Munson
HBM Prenscia
Agenda

1. Durability challenges in powertrain components
2. Methods of analyzing powertrain component durability
 - Vibration fatigue
 - Safety factor analysis
 - Stress gradient approach for castings
 - Temperature’s effect on fatigue
 - Specialized methods for gray cast iron
3. Summary
Powertrain Durability Challenges

- Powertrain engineering covers a wide range of components that require differing methods for durability assessment.
Designing Around Endurance Limit

- Powertrain engineering covers a wide range of components that require differing methods for durability assessment.

Pistons, crankshafts, valve springs, etc. may be assessed using a safety factor analysis.
Safety Factors in Design: Simple to Complex

- Many parts are designed according to a safety factor.
- What is the ratio of strength to stress?
- The safety factor can be calculated many ways:

\[\sigma_{VonMises} < \frac{1}{3} UTS \]

- Fatigue limit safety factor
- UTS-based safety factor
- Fatigue limit with mean stress safety factor
- Cumulative damage
- Stress-Life, Strain-Life, etc.
Designing Around Vibration

- Powertrain engineering covers a wide range of components that require differing methods for durability assessment.

Electronics and other under-hood mounted components are signed off with vibration tests.
Vibration Fatigue from Harmonic Stresses

- The response PSD: \(PSD_{\text{stress}}(f) = PSD_{\text{acceleration}}(f) \cdot |FRF(f)|^2 \)
- Derive the statistical cycle distribution based on work by S. O. Rice
Vibration Fatigue from Harmonic Stresses

\[\sigma_A = [H1]^2 L1 + [H2]^2 L2 + [H1]*[H2] L12 + [H1][H2]* L21 \]

Response PSD and Statistical Cycle Distribution → SN Analysis → Fatigue Results

PSD L1 → CSD L12 → Gain Phase

FRF H1 → FRF H2

© 2016 HBM

HBM Prenscia: Public

© 2016 HBM

October 5-6, 2016

www.ncode.com
Designing Around Heat

- Powertrain engineering covers a wide range of components that require differing methods for durability assessment.

Turbochargers and exhaust systems require thermo-mechanical fatigue analysis.
Which Temperature Dependent Fatigue Method is Best?

Start

Is stress caused by temperature

No

Isothermal fatigue

Yes

Is $T > 50\%$ of T_{melt} (K)?

No

Chaboche Transient

Yes

Chaboche Transient & Creep Rupture
Designing with Castings

- Powertrain engineering covers a wide range of components that require differing methods for durability assessment.

Images copyright Beaudaniels.com

Engine block and other castings require specialized material modelling and fatigue algorithms
Notch Sensitivity and Fatigue of Cast Materials

\[\frac{d\sigma}{dz} \]

\[\sigma = \frac{K_t}{K_f} \]

Gray Iron

- Cast iron with graphite flakes for improved manufacturability and damping
- Often used in engine blocks, pump housings, and disk brake rotors
- Graphite flakes are weak and act as voids when loaded
- Leads to higher strength and stiffness in compression than tension
Fatigue of Gray Iron

- Hysteresis loop is no longer symmetric
- Shape changes in loading vs. unloading, and tension vs. compression
- Strain life methodology used with modified plasticity model and Smith Watson Topper damage parameter
- Available in nCode 12.1
9 gray irons are included in the standard nCode material database.
Summary

Methods of analyzing powertrain component durability

- Vibration fatigue
- Safety factor analysis
- Stress gradient approach for castings
- Temperature’s effect on fatigue
- Specialized methods for gray cast iron – new in nCode 12.1
Thank you!

Kurt Munson
Principal consulting engineer
kurt.munson@hbmprenscia.com