Automotive turbochargers aero acoustic noise source characterization:
VibeSys adoption for new psycho acoustic criteria applied on turbo aero noise

Frederic Kihm
Product Manager, HBM Prenscia
Frederic.Kihm@hbmprenscia.com
• **Honeywell** Transportation Systems
 • New branding arriving soon...
 • Worldwide leader on **turbochargers** market
 • Growing trend in automotive **engine downsizing** for fuel economy & CO2 global emissions reduction

• **Turbocharger basics**
 • **Key element** of today & future powertrains for fuel economy & lower CO2 emissions
 • Thermal & kinetic energy from exhaust gas transformed into shaft/wheels assembly rotational speed
 • Provide oxygen to engine through compressed air
 Intro to Honeywell Transportation Systems & Vibro Acoustics

- Vibro Acoustics @ Honeywell
 - Noise & Vibration source
 - Model: Source / Path / Receiver
 - System approach: Turbo / Engine / Vehicle
 - Noise origins: product/process related
 - Rotor dynamic
 - Aerodynamic
 - Kinematic
 - Electromagnetic
 - Small rotating machinery
 - High rotation speed, mass flow & temperature
 - Operating condition are « Continuous transient » phases
• Acoustics of turbochargers ... Why?

• Acoustic requirements of car makers & automotive field
 • Comfort
 • Car maker brand image
 • Technical differentiation with competitors
Challenge & project scope

• Development of a new type of turbocharger product
 • Noise considered as **key element for customer adoption**
 • Potential « project killer »

• **New type of aero noise** source content
 • No robust CFD/Aero Acoustics simulation available yet
 • Existing data analysis methodology not enough to characterize this noise type

• **Short time frame** for investigations execution
 • Prototyping & testing

• Investigations generated huge amount of experimental data
 • **3 NVH test campaigns** on Turbo bench (Gas stand)
 • **30 days** of tests
 • **400 hours** of test cell running
 • **54 design configurations**
 • **2700 spectrums**
 • **65 Go** of data
Using VibeSys for NVH test data analysis & new psycho acoustic criteria

- nCode VibeSys used @ Honeywell as NVH experimental data **post processing software**
 - For Honeywell key & strategic project around a new type of product & aero noise source characterization
 - During development phase & huge turbo bench test campaigns

- nCode VibeSys main advantages
 - **Flexibility**
 - Customizable data analysis workflow quick & easy to built
 - New acoustic criteria built using glyphs assembly
 - **Efficiency**
 - VibeSys workflow re-usable on several test campaigns
 - Easy drag & drop use on a huge amount of experimental data
• Turbo test cell setup
 • Gas stand cell
 • Usual way for aero broad band noise source characterization
 • Turbo run using hot air/gas turbine side
 • Turbo operating points controlled (using several valves) with
 • Compressor mass flow (kg/s)
 • Compressor Pressure Ratio()
 • Anechoic ends added @ air inlet & outlet
 • To avoid reflected waves in ducts
 • Instrumentation
 • Turbo speed sensor (optical)
 • Accelerometer on turbo Center & Compressor Housings
 • Pulsation (dynamic pressure) sensors @ compressor inlet & outlet ducts

Using VibeSys for NVH test data analysis & new psycho acoustic criteria
Internal state of art for usual aero broad band noise source characterization
 - 3 Microphones Methodology for acoustic intensity assessment
 - Based on frequency domain analysis
 - Anechoic ends @ air inlet & outlet to avoid reflected waves
 - Assumption of planed wave propagation in duct (Ø 40 mm) for high wave length: valid < 4.5 kHz
 - Frequency bands average acoustic intensity on compressor map domain (Pressure ratio vs Mass flow)

✓ Good assessment for constant aero broad band noise source below 4.5 kHz
 - Done with internal code

❖ Not well adapted for
 - Tonal noise source
 - No constant (varying in time) noise source
 - Very high frequency noise source
Using VibeSys for NVH test data analysis & new psycho acoustic criteria

• First internal feedback & usual noise source evaluation did not match
 • Usual & internal aero noise source evaluation do not cover new noise content
 • New noise criteria required to improve understanding of relationship between product design & new noise source content

• Subjective (human perception) & objective (measurements) evaluations need to be taken into account
 • Criteria 1 : Fluctuation SDev Ratio
 • Based on Time domain analysis
 • Human perception : « Steam locomotive », no « safety » sound for usual compressor flow noise
 • Criteria 2 : Low frequency peak emergence
 • Based on Frequency domain analysis
 • Human perception : annoying whistling, captured by hears when peak frequency is below 2/3 kHz
Using VibeSys for NVH test data analysis & new psycho acoustic criteria

- Criteria 1: Fluctuation SDev Ratio
 - Based on time domain very low frequency **signal modulation**
 - Compressor outlet pulsation signal
 - Fluctuation effect during noise listening (« steam locomotive »)
 - Very low frequency (> 20 Hz) content magnitude
 - To see & detect the overall level modulation
 - **Ratio** b/w overall & very low frequency signal range
 - Standard deviation of magnitude for better spread description
 - Modulation detection with threshold value of 15%
 - Based & calibrated with several sound sample listening
 - **Fluctuation SDev Ratio**
 - Overall SDev / VeryLowFreq SDev

Sdev Ratio > 0.15

Sdev Ratio < 0.15
- **Criteria 2: Low frequency peak emergence**
 - Based on **frequency domain & spectrums**
 - Signal frequency content distribution
 - Peaks (more or less wide) emergence identification responsible to whistling feeling during signal listening
 - Focused on **peak emergence** below 2000 or 3000 Hz
 - Annoying & bad human perception even if overall noise level is low
 - Similar philosophy than tone to noise ratio applied on tonal noise
 - Tonal & wider peaks taken into account
 - **Low frequency peak emergence**
 - Step 1: running average (windows size of 600 Hz) to extract spectrum overall shape
 - Step 2: running average subtracted to spectrum itself, to keep only peaks and details of the spectrums
 - Step 3: Threshold detection applied on the remaining signal
 - Annoying peak considered when criteria > 8dB

Using VibeSys for NVH test data analysis & new psycho acoustic criteria
Next steps: Aero noise source levels criticality @ cabin level

- **1) Airborne Transfer Function** from compressor ducts to cabin
- **2) ‘Digital’ aero cabin noise sample** using noise captured on Turbo bench, and vehicle transfer function

Vehicle tests & VibeSys features

- (1) Static test on vehicle with white noise source & microphones @ cabin & compressor ducts level
- (1) Transfer function glyph used with vehicle test data to evaluate airborne noise transfer function
- (2) Custom FFT filter glyph used as transfer function to transform noise signal @ duct level to noise signal @ cabin level

Final target: Product optimization design for low noise

- Identify critical noise content & frequency bands @ cabin level, associated to product design parameters
Summary

Challenge

• New aero noise type characterization for a Honeywell key project, where internal state of art is not enough.

• Huge amount of experimental data in a short time frame from investigations.

Solution

• VibeSys flexibility: glyphs combination for new acoustic criteria building in phase with the new type of noise content.

• VibeSys efficiency: huge amount of experimental noise data quick & easy to handle.

Results and Next Steps

• 2 new acoustic criteria applied on a Design Of Experiments (> 50 design configuration ≈ 65 Go) for product design impact understanding.

• Acoustic criteria build quickly following subjective feedback of noise source evaluation & signal processing basics.

• Assess aero noise source criticality through compressor ducts to cabin airborne noise transfer function.

• Identify critical noise content & frequency bands, associated to product design parameters for design optimization.
More detail, including first validation using jury testing results