arrow_back_ios

Main Menu

See All Software See All Instruments See All Transducers See All Vibration Testing Equipment See All Electroacoustics See All Acoustic End-of-Line Test Systems See All Academy See All Resource Center See All Applications See All Industries See All Services See All Support See All Our Business See All Our History See All Global Presence
arrow_back_ios

Main Menu

See All Analysis & Simulation Software See All DAQ Software See All Drivers & API See All Utility See All Vibration Control See All High Precision and Calibration Systems See All DAQ Systems See All S&V Hand-held Devices See All Industrial Electronics See All Power Analyzer See All S&V Signal Conditioner See All Acoustic Transducers See All Current and Voltage Sensors See All Displacement Sensors See All Force Sensors See All Load Cells See All Multi Component Sensors See All Pressure Sensors See All Strain Sensors See All Strain Gauges See All Temperature Sensors See All Tilt Sensors See All Torque Sensors See All Vibration See All Accessories for Vibration Testing Equipment See All Vibration Controllers See All Measurement Exciters See All Modal Exciters See All Power Amplifiers See All LDS Shaker Systems See All Test Solutions See All Actuators See All Combustion Engines See All Durability See All eDrive See All Production Testing Sensors See All Transmission & Gearboxes See All Turbo Charger See All Training Courses See All Acoustics See All Asset & Process Monitoring See All Custom Sensors See All Durability & Fatigue See All Electric Power Testing See All NVH See All Reliability See All Vibration See All Weighing See All Automotive & Ground Transportation See All Calibration See All Installation, Maintenance & Repair See All Support Brüel & Kjær See All Release Notes See All Compliance
arrow_back_ios

Main Menu

See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All API See All Experimental Testing See All Electroacoustics See All Noise Source Identification See All Environmental Noise See All Sound Power and Sound Pressure See All Noise Certification See All Industrial Process Control See All Structural Health Monitoring See All Electrical Devices Testing See All Electrical Systems Testing See All Grid Testing See All High-Voltage Testing See All Vibration Testing with Electrodynamic Shakers See All Structural Dynamics See All Machine Analysis and Diagnostics See All Dynamic Weighing See All Vehicle Electrification See All Calibration Services for Transducers See All Calibration Services for Handheld Instruments See All Calibration Services for Instruments & DAQ See All On-Site Calibration See All Resources See All Software License Management

Fiber Reinforced Plastic Durability: From Material Microstructure to Structural Part Life Predictions

The last 50 years saw the development of mechanical simulation thanks to the growth of computers. This development was originally boosted by the industrial production of metal parts. It yielded technologies subsequently applied to new materials such as fiber reinforced plastics with uneven success and consecutive suboptimal designs. Indeed, such materials exhibit much different properties than metals. In particular, their nonlinearity and anisotropy are not straightforward to take into account in simulations. Moreover their properties vary through space (within a given part) and time depending on the manufacturing process and the operating environment. This variability is actually driven by the material microstructure i.e., the amount, shape and orientation adopted by the fibers at the core of the composite. Hence the name of the game in composite material modeling – and the strategy applied by e-Xstream engineering since 10 years – consists in enriching simulations with such microstructural information. This multi-scale modeling strategy will be addressed in this paper, focusing on fiber reinforced plastic durability.

 

Multi-scale modeling enables accurate structural part life predictions from a limited amount of experimental data. On the one hand, it yields stresses depending on local fiber orientation, required as first input for a structural fatigue analysis. On the other hand, it provides S-N curves for both local microstructure and multiaxial stress state, necessary as second input for the fatigue analysis. Hence, its combination with local fiber orientations from injection molding simulation constitutes a fully coupled approach to lifetime estimation. Indeed, thanks to multi-scale modeling, nCode DesignLife proceeds to stress combination and damage computation based on microstructure-sensitive stresses and S-N curves respectively. The two dependencies on microstructure, embedded in so-called material models, are calibrated on specimen measurements in few directions with respect to the injection direction, routinely performed by Solvay as long as PA66 is concerned. They are subsequently available for structural part life predictions, e.g., for a beam demonstrator employed at Solvay or an engine mount, an automotive part undergoing demanding under-the-hood environmental conditions. Hence they drive reductions in prototyping and design costs related to the structural durability of a component, one of the most expensive attributes to test.

 

Presenter: Kurt Danielson, e-Xstream engineering

Originally presented on March 5, 2015 at the 2015 HBM-nCode Products User Group Meeting in Livonia, Michigan (USA).